Small Lesions Evaluation Based on Unsupervised Cluster Analysis of Signal-Intensity Time Courses in Dynamic Breast MRI
نویسندگان
چکیده
An application of an unsupervised neural network-based computer-aided diagnosis (CAD) system is reported for the detection and characterization of small indeterminate breast lesions, average size 1.1 mm, in dynamic contrast-enhanced MRI. This system enables the extraction of spatial and temporal features of dynamic MRI data and additionally provides a segmentation with regard to identification and regional subclassification of pathological breast tissue lesions. Lesions with an initial contrast enhancement >/=50% were selected with semiautomatic segmentation. This conventional segmentation analysis is based on the mean initial signal increase and postinitial course of all voxels included in the lesion. In this paper, we compare the conventional segmentation analysis with unsupervised classification for the evaluation of signal intensity time courses for the differential diagnosis of enhancing lesions in breast MRI. The results suggest that the computerized analysis system based on unsupervised clustering has the potential to increase the diagnostic accuracy of MRI mammography for small lesions and can be used as a basis for computer-aided diagnosis of breast cancer with MR mammography.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملImproving the performance of neural network in differentiation of breast tumors using wavelet transformation on dynamic MRI
ABSTRACT Background: A computer aided diagnosis system was established using the wavelet transform and neural network to differentiate malignant from benign in a group of patients with histo-pathologically proved breast lesions based on the data derived independently from time-intensity profile. Materials and Methods: The performance of the artificial neural network (ANN) was evaluated u...
متن کاملComparative Analysis of Unsupervised Algorithms for Breast MRI Lesion Segmentation
Accurate segmentation of breast lesions is a crucial step in evaluating the characteristics of tumors. However, this is a challenging task, since breast lesions have sophisticated shape, topological structure, and variation in the intensity distribution. In this paper, we evaluated the performance of three unsupervised algorithms for the task of breast Magnetic Resonance (MRI) lesion segmentati...
متن کاملPotential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times
Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...
متن کاملSignal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer
Background: Diffusion-weighted imaging (DWI) is a main component of multiparametric MRI for prostate cancer detection. Recently, high b value DWI has gained more attention because of its capability for tumor characterization. Objective: To assess based on histopathological findings of transrectal ultrasound (TRUS)-guided prostate biopsy as a reference, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009